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Outline
• The problem: latex film properties, macrocrystal 

defects arising from particle heterogeneity
• Precedents: deviations from expected latex 

behavior: coagulation, zonal centrifugation
• The approach: analytical microscopies, e.g. ESI-

TEM, BEI/FESEM, SPM (SEPM, EFM, MFM)
• Results:

– inter- and intra-particle heterogeneity
– effect on latex self-arraying and film formation
– detection of non-particulate constituents 



Polymers (thermoplastics, 
rubbers, thermosetting)

• Formed by macromolecular covalent or 
entangled networks

• Ionic groups in ionomers or in sites 
formed tribochemically

• Usual assumption: electroneutrality, in 
the supramolecular scale.



Electroneutrality, where?

• Electrets and charge injection
• The Costa Ribeiro effect
• Thermo-stimulated currents (Mascarenhas, 

Leal Ferreira)
• Space charges, residual charges
• Interfacial double layers, interfacial 

polarization
• Problem: Insulator degradation
• Problem: Eletrostatics of the environment 



Coloidal particles

• Crystalline or amorphous
• Micro- to nanometric dimensions
• Colloidal stability is kinetic, dependent on 

electric repulsions
• Chemical composition: average and local
• Usual hypothesis: uniform chemical 

composition, but few proofs for this 
assumption 

or       ,       ?

or          ?



Working hypotheses
• Chemical and electrical 

non-uniformity, within 
particles and among 
particles

• Discrete sub-
populations, or 
continuous variations 
of composition and 
properties

Hypotheses testing
• Microanalysis, 

enhanced by association 
to chemical separation 
techniques

• ESI-TEM, BEI-EDAX-
SEM, scanning probe 
microscopies 
– (and many others)



Electron spectroscopy imaging
(ESI-TEM)

• TEM with an electron energy monochromator
• Acquisition of EELS (electron energy-loss 

spectra)
• (Inelastic) scattered electrons carry 

information on the position of the scattering 
elements in the sample

• Element mapping with a high sensitivity, even 
for light elements (C, O, N, S, Na)
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PS-M, a polystyrene latex (M. Braga, C.A.P.Leite et al., J.Phys.Chem. 2001)



D = 159 nm
ζ  = -36 mV

D = 189 nm 
ζ  = -42 mV

D = 414 nm 
ζ  = -54 mV

Latex fractionation by colloidal 
crystallization and sedimentation



1 µm

Fracture surface of a well-
developed
PS-HEMA macrocrystal, made 
with the bottom latex fraction.



(1)

SEI

BEI
BEI  and SEI images of PS-HEMA 
latex do not match each other.
Chemical domain geometry is 
different from particle geometry.

Particles clustered around line and 
point defects are darker than well-
organized particles.
Their average atomic numbers are 
lower: richer in styrene, poorer in 
acrylic.



Profile of a PS* zone after 20 min centrifugation in 
a sucrose gradient (19,000 rpm).
* : PS-M, exposed to chloroform vapor for 24 h
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Chemical information from scanning probe 
microscopies

AFM images (contact, non-
contact, tapping, phase 
contrast, lateral force) 
yield morphological and 
(indirect) chemical 
information, based on:

• friction
• viscoelasticity
• changes in the Hamaker

constant

Many other imaging 
modes:

• electric potential
• electric force
• magnetic force
• thermal conductivity
• specific probes, coated 

with interacting layers
• more, new types...



Scanning electric probe 
microscopies: SEPM, EFM

• Image contrast depends on the 
electrostatic interaction between the 
probe and the sample

• Identification of domains with different 
electric charge excess

• Image acquisition simultaneous to non-
contact AFM imaging: same field



Induction of electric charges on the tip
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SEPM: scanning electric potential microscopy
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EFM: electric force microscopy
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TiO2 particles on a mica step: separation of van der Waals and 
electrostatic interactions: 

positive shells on negative cores.

NON-CONTACT AFM



Poly (styrene-co-hydroxyethyl
metacrylate), a macrocrystal-
forming latex

Scanning electric potential
image
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POLYPROPYLENE FILM  
(thickness = 0.175 mm)

Background:  is  very  rough  
(topography), but flat in SEP  
picture. 

SEP

4.105 V

0.509 V
TOPOGRAPHY

92 nm

0 nm

2.5 µm

Elevations    appear    as    sites
requiring a more negative bias
and  surrounded  by a positive
halo.

A. Galembeck et al., Polymer 2001



TOPOGRAPHY
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The printing surface of a desk-jet film

Elevations are bipolar: consistent with polyelectrolyte spreading 
on the PET surface
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SEPM, scanning electric
potential microscopy
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Film of SiO2 nanoparticles (∅ = 36.5 ± 1.0 nm)

Topography: it is not possible to identify the original 
particles.

EF: shows a large contrast between neighboring domains, in
the same size range as the particle diameters.
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Film of SiO2 nanoparticles (∅ = 141.5 ± 2.5 nm)

The particles are distorted anisotropically, during the film formation
(checked by rotating the sample)

The  particle  borders  are visible,  thus excluding the prevalence of
particle coalescence or inter-particle diffusion.
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Modification of natural rubber 
latex by polyphosphates

• NaPP effect on film spreading and adhesion 
to glass and thermoplastics

• Film morphology
• Electric potential mapping 

• Modulus mapping
• Film microchemistry

• A tentative model



Tape peel 
testing

Film with adesive tape

adhesive tape-coated area

pristine
latex film
after first peel:
rubber is 
peeled-off.

polyphosphate-
modified
latex 
film
after third 
tape peel:
rubber is not
damaged.



Natural rubber film topography (non-contact AFM) 

and scanning electric potential (SEPM) images

Individual particles are observed as elevations. 
Negative cores dispersed in a positive matrix. 
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PP-NR 
film 
surface

PP-NR 
film 
surface in 
contact 
with the 
glass

Natural rubber  + sodium polyphosphate film 
non-contact AFM and scanning electric potential (SEPM) images
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Natural rubber  + sodium polyphosphate fracture
(non-contact AFM) and scanning electric potential (SEPM) images
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Modulated force image of PP-NR film: dark 
is low-modulus, bright is high-modulus

Dark domains of soft rubber, 
interpenetrated with harder rubber domains.

Interfaces have the highest modulus.
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-

A model for 
adhesion 
improvement on 
glass and acrylic:
the PP-rubber 
film has charged 
domains, which 
bind to the 
replicating 
surface.



Conclusions
•Sodium polyphosphate improves latex spreading, dry 
and wet adhesion of NR on glass and acrylic.

•Triphosphate-NR films contain birrefringent domains, 
no adhesion improvement.

•PP-NR film morphology and electric charge 
distribution pattern is different from NR.

•Films contain domains of different moduli.
•Mutual exclusion of C and P, Na, N, O – rich domains.



Current problems
• Effects of particle constituent distribution 

(inter- and intraparticle).
• Applications of the di(multi)polar character of 

particles: adhesion, mechanical properties
• Nature and control of the sites with finite 

charge densities, in polymers and oxides
• Charge pattern effect on (hetero)coagulation, 

film formation and superplastic behavior
• Adsorbate patterning in surfaces
• New techniques, for new problems
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